LSRN Solver
So many cool projects, so little time.
"We describe a parallel iterative least squares solver named LSRN that is based on random normal projection. LSRN computes the min-length solution to minx∈Rn ∥Ax − b∥2, where A ∈ Rm×n with m ≫ n or m ≪ n, and where A may be rank-deficient. Tikhonov regularization may also be included. Since A is only involved in matrix-matrix and matrix-vector multiplications, it can be a dense or sparse matrix or a linear operator, and LSRN automatically speeds up when A is sparse or a fast linear operator. The preconditioning phase consists of a random normal projection, which is embarrassingly parallel, and a singular value decomposition of size ⌈γ min(m, n)⌉ × min(m, n), where γ is moderately larger than 1, e.g., γ = 2. We prove that the preconditioned system is well-conditioned, with a strong concentration result on the extreme singular values, and hence that the number of iterations is fully predictable when we apply LSQR or the Chebyshev semi-iterative method. As we demonstrate, the Chebyshev method is particularly efficient for solving large problems on clusters with high communication cost. Numerical results demonstrate that on a shared-memory machine, LSRN outperforms LAPACK's DGELSD on large dense problems, and MATLAB's backslash (SuiteSparseQR) on sparse problems. Further experiments demonstrate that LSRN scales well on an Amazon Elastic Compute Cloud cluster. "
0 Comments:
Post a Comment
<< Home